
Automata & compiler Design

MRCET CAMPUS (AUTONOMOUS INSTITUTION – UGC, GOVT. OF INDIA)

Department of CSE
(Emerging Technologies)
(CYBERSECURITY,DATASCIENCE)

B.TECH(R-20 Regulation)
(III YEAR – I SEM)

(2023-24)

AUTOMATA AND COMPILER DESIGN
(R20A1202)

LECTURE NOTES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12(B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India

Automata & compiler Design

Department of Computer Science and Engineering

EMERGING TECHNOLOGIES

AUTOMATA AND COMPILER DESIGN

(R20A1202)

LECTURE NOTES

Prepared by

V SUNEETHA ,

ASSOCIATE PROFESSOR

ON

30-07-2021

Automata & compiler Design

Department of Computer Science and Engineering

EMERGING TECHNOLOGIES

Vision

 “To be at the forefront of Emerging Technologies and to evolve as a Centre of Excellence

in Research, Learning and Consultancy to foster the students into globally competent

professionals useful to the Society.”

Mission

The department of CSE (Emerging Technologies) is committed to:

 To offer highest Professional and Academic Standards in terms of Personal growth and
satisfaction.

 Make the society as the hub of emerging technologies and thereby capture
opportunities in new age technologies.

 To create a benchmark in the areas of Research, Education and Public Outreach.

 To provide students a platform where independent learning and scientific study are
encouraged with emphasis on latest engineering techniques.

QUALITY POLICY

 To pursue continual improvement of teaching learning process of Undergraduate and

Post Graduate programs in Engineering & Management vigorously.

 To provide state of art infrastructure and expertise to impart the quality education and

research environment to students for a complete learning experiences.

 Developing students with a disciplined and integrated personality.

 To offer quality relevant and cost effective programmes to produce engineers as per

requirements of the industry need.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

Automata & compiler Design

SYLLABUS

III Year B.Tech. CSE (DS,CS) - I Sem L/T/P/C

3/-/-/3

 (R20A1202) AUTOMATA & COMPILER DESIGN

COURSE OBJECTIVES: -

 To provide an understanding of automata, grammars, language translators.

 To know the various techniques used in compiler construction.

 To be aware of the process of semanticanalysis.

 To analyze the code optimization & code generation techniques.

UNIT - I:

Formal Language and Regular Expressions: Languages, Definition Languages regular

expressions, Finite Automata – DFA, NFA. Conversion of regular expression to NFA, NFA

to DFA. Context Free grammars and parsing, derivation, parse trees, Application of

Finite Automata.

UNIT - II:

Introduction To Compiler, Phases of Compilation, ambiguity LL(K) grammars and

LL(1) parsing Bottom up parsing handle pruning LR Grammar Parsing, LALR parsing,

parsing ambiguous grammars, YACC programming specification.

Semantics: Syntax directed translation, S-attributed and L-attributed grammars,

UNIT - III: Intermediate code – abstract syntax tree, translation of simple statements
and control flow statements.Context Sensitive features – Chomsky hierarchy of

languages and recognizers, type checking, type conversions, equivalence of type

expressions, overloading of functions and operations.

UNIT - IV:

Run time storage: Storage organization, storage allocation strategies scope access to non local

names, Code optimization: Principal sources of optimization, optimization of basic blocks,
peephole optimization,

Automata & compiler Design

UNIT - V:

Code generation: Machine dependent code generation, object code forms, generic

code generation algorithm, Register allocation and assignment. Using DAG
representation of Block.

TEXT BOOKS:

1. Introduction to Theory of computation.Sipser, 2nd Edition, Thomson.

2. Compilers Principles, Techniques and Tools Aho, Ullman, Ravisethi, Pearson Education.

REFERENCES:

1. Modern Compiler Construction in C , Andrew W.Appel Cambridge University

Press.

2. Compiler Construction, LOUDEN, Thomson.

3. Elements of Compiler Design, A. Meduna, Auerbach Publications,

Taylor and Francis Group.

4. Principles of Compiler Design, V. Raghavan, TMH.

5. Engineering a Compiler, K. D. Cooper, L. Torczon, ELSEVIER.

6. Introduction to Formal Languages and Automata Theory and

Computation - Kamala Krithivasan and Rama R, Pearson.

7. Modern Compiler Design, D. Grune and others, Wiley-India.

8. A Text book on Automata Theory, S. F. B. Nasir, P. K. Srimani, Cambridge Univ.

Press.

9. Automata and Language, A. Meduna, Springer.

COURSE OUTCOMES:

 Understand the necessity and types of different language translators inuse.

 Apply the techniques and design different components (phases) of a compiler.

 Ability to implement practical aspects of automata theory.

 Use the tools Lex, Yacc in compiler construction

Automata& Compiler Design Page 1

B.Tech – CSE (Emerging Technologies) R-20

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CSE(Emerging Technologies)

INDEX

S. No

Unit
Topic

Page

no

1

I Languages, Definition languages regular expressions 6

2

I Finite automata -DFA,NFA 8

3
1 Conversion of regular expression to NFA

13

4
1 NFA to DFA

15

5
1 Context free grammars, Parse trees,Application of Finite Automata

18

6
2 Phases of Compilation,Ambiguity LL(k) grammars, LL(1)Parsing

20

7
2 Bottom up parsing

22

8
2 Handle pruning,LR Grammar Parsing

23

9
2 YACC programming specification

27

10
2 Syntax directed translation

28

11
2 S-attributed and L-attributed grammars

29

12
2

Intermediate code 31

13
2

Abstract syntax tree 33

14
2 Translation of simple statements and control flow statements

34

15
3

Chomsky hierarchy of languages and recognizers 36

16
3 Type checking, type conversions

37

Automata& Compiler Design Page 2

17
3

Overloading of functions and operations 39

18
4

Storage organization 41

19
4 Storage allocation strategies

42

20
4 Scope access to now local names,parameters

43

21
4 Language facilities for dynamics storage allocation

48

22
5

Principal sources of optimization, optimization of basic blocks 48

23
5 Peephole optimization

54

24
5 Flow graphs, Data flow analysis of flow graphs

55

25
5

Machine dependent code generation,object code forms 58

26
5

Generic code generation algorithm 60

27
5 Register allocation and assignment

62

28
5 Using DAG representation of Block

63

Automata& Compiler Design Page 3

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Emerging Technologies)

UNIT -1

Fundamentals

Symbol – An atomic unit, such as a digit, character, lower-case letter, etc.

Sometimesa word.[Formal language does not deal with the “meaning” of

thesymbols.]

Alphabet – A finite set of symbols, usually denoted byΣ.

Σ ={0, 1}

Σ = {0, a,9, 4}

Σ = {a, b, c,d}

String – A finite length sequence of symbols, presumably from some

alphabet. w=0110

y=0aa

x=aabcaa

z = 111

Special string: ε (also denoted by λ)

Concatenation: wz = 0110111

Length:

Reversal:

|w| = 4

yR = aa0
|ε| = 0 |x| = 6

Some special sets of strings:

Σ* All strings of symbols fromΣ

Σ+ Σ* -{ε}

Example: Σ = {0,1}

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…}

Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…}

A languageis:

A set of strings from some alphabet (finite or infinite). In otherwords,

Any subset L ofΣ*

Some speciallanguages:

{}The empty set/language, containing nostring.

{ε}A language containing one string, the emptystring.

Examples:

Σ = {0,1}

L = {x | x is in Σ* and x contains an even number of 0‟s}

Σ = {0, 1, 2,…, 9, .}

Automata& Compiler Design Page 4

= {0, 1.5, 9.326,…}

Σ = {a, b, c,…, z, A, B,…, Z}

L = {x | x is in Σ* and x is a Pascal reserved word}

= {BEGIN, END, IF,…}

Σ = {Pascal reserved words} U { (,), ., :, ;,…} U {Legal Pascal identifiers} L = {x | x is in Σ
*

and x is a
syntactically correct Pascal program}

Σ = {English words}

L = {x | x is in Σ
*

and x is a syntactically correct English sentence}

Regular Expression

• A regular expression is used to specify a language, and it does so precisely.

• Regular expressions are very intuitive.

• Regular expressions are very useful in a variety ofcontexts.

• Given a regular expression, an NFA-ε can be constructed from it automatically.

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically.

Definition:

Let Σ be an alphabet. The regular expressions over Σare:

Ø Represents the empty set {}

Ε Represents the set{ε}

Represents the set {a}, for any symbol a inΣ
Let r and s be regular expressions that represent the sets R and S, respectively.

r+sRepresents the set RUS (precedence3)

rsRepresents thesetRS (precedence2)

r* Represents thesetR* (highest precedence)

(r) Represents thesetR (not an op, providesprecedence)

If r is a regular expression, then L(r) is used to denote the correspondinglanguage.

Examples:

Let Σ = {0,1}

(0 +1)* All strings of0‟s and1‟s0(0 +1)* Allstrings of 0‟s and 1‟s, beginning with a0(0

+1)*1 All strings of 0‟s and 1‟s, ending with a1

(0 + 1)*0(0+1)* All strings of 0‟s and 1‟s containing at least one 0 (0 + 1)*0(0 + 1)*0(0+1)* All

strings of 0‟s and 1‟s containing at least two

0‟s (0+1)*01*01* All strings of 0‟s and 1‟s containing at least two

0‟s (101*0)* All strings of 0‟s and 1‟s containing an even number of 0‟s

1*(01*01*)* All strings of 0‟s and 1‟s containing an even number of 0‟s

(1*01*0)*1* Allstrings of 0‟s and 1‟s containing an even number of0‟s

Identities:

1. Øu = uØ=Ø Multiply by0

2. εu = uε=u Multiply by1

3. Ø* =ε

4. ε* =ε

5. u+v =v+u

6. u + Ø =u

7. u + u = u

8. u* =(u*)*

9. u(v+w) =uv+uw

10. (u+v)w =uw+vw

11. (uv)*u = u(vu)*

12. (u+v)* = (u*+v)*

=u*(u+v)*

=(u+vu*)*

= (u*v*)*

=u*(vu*)*

=(u*v)*u*

Finite State Machines

A finite state machine has a set of states and two functions called the next-state

function and the output function

The set of states correspond to all the possible combinations of the internal storage

If there are n bits of storage, there are 2n possible states

The next state function is a combinational logic function that given the inputs and the
current state, determines the next state of the system

The output function produces a set of outputs from the current state and the inputs

 There are two types of finite statemachines

 In a Moore machine, the output only depends on the current state

 While in a Mealy machine, the output depends both the current state and the current input

 We are only going to deal with the Mooremachine.

 These two types are equivalent incapabilities

A Finite State Machine consistsof:

Kstates:S = {s1, s2, … ,sk}, s1 is initial state Ninputs:I = {i1,

i2, …,in}
Moutputs:O = {o1, o2, …,om}

Next-state function T(S, I) mapping each current state and input to next state Output Function

P(S) specifies output

Finite Automata

 Two types – both describe what are called regular languages

• Deterministic (DFA) – There is a fixed number of states and we can

only be in one state at a time

Automata &Compiler Design Page 8

Automata & compiler design Page 9

• Nondeterministic (NFA) –There is a fixed number of states but it can be

in multiple states at one time

 While NFA‟s are more expressive than DFA‟s, we will see that adding

nondeterminism does not let us define any language that cannot be

defined by a DFA.

 One way to think of this is we might write a program using a NFA, but

then when it is “compiled” we turn the NFA into an equivalent DFA.

Formal Definition of a Finite Automaton

• Finite set of states, typically Q.

• Alphabet of input symbols, typically∑

• One state is the start/initial state, typically q0 // q0 ∈ Q

• Zero or more final/accepting states; the set is typically F. // F⊆Q
• A transition function, typicallyδ. Thisfunction takes a state and input symbol as arguments.

Deterministic Finite Automata (DFA)

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F)

Q=A finite set of states

Σ=A finite input alphabet

q0=The initial/starting state, q0 is in Q

F=A set of final/accepting states, which is a subset of Q

Δ=A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ)–>Q δ is defined for any q in Q and s in Σ, and δ(q,s)=q‟is equal to

another state q‟ in Q.

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q.

• LetM=(Q,Σ,δ,q,F) be a DFA and let w be in Σ*.Then w is accepted by M iff
0

Automata & compiler design Page 10

δ(q ,w) = p for some state p in F.

0

• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is theset:
0

L(M) = {w | w is in Σ* and δ(q ,w) is in F}

• Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

• Let L be a language. Then L is a regular language iff there exists a DFA

M such that L =L(M).

Notes:

• A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets:

L(M)and Σ* -L(M).

• If L = L(M) then L is a subset of L(M) and L(M) is a subset of L.

• Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a

subset of L(M1).

• Some languages are regular, others are not. For example,if

L1 = {x | x is a string of 0's and 1's containing an even number of 1's} and L2 = {x | x = 0n1n

for some n >= 0}then L1 is regular but L2 is not.

Nondeterministic Finite Automata (NFA)

An NFA is a five-tuple: M = (Q, Σ, δ, q0,F)

Automata & compiler design Page 11

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to2Q

δ: (Q x Σ)->2Q -2Q is the power set of Q, the set of all subsets of Q δ(q,s) -The set of

all states p such that there is a transition

labeled s from q to p δ(q,s) is a function from Q x S to 2Q (but not to Q)

Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is accepted by

M iff δ({q0}, w) contains at least one state inF.

Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M is the

set: L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}

Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

Automata & compiler design Page 12

Automata & compiler design Page 13

Automata & compiler design Page 14

Automata & compiler design Page 15

Conversion from NFA to DFA

Suppose there is an NFA N < Q, ∑, q0, δ, F > which recognizes a language L. Then the DFA D <

Q‟, ∑, q0, δ‟, F‟ > can be constructed for language L as:

Step 1: Initially Q‟ = ɸ.

Step 2: Add q0 to Q‟.

Step 3: For each state in Q‟, find the possible set of states for each input symbol using transition

function of NFA. If this set of states is not in Q‟, add it to Q‟.

Step 4: Final state of DFA will be all states with contain F (final states of NFA)

Automata & compiler design Page 16

Example

Consider the following NFA shown in Figure 1.

Following are the various parameters for NFA.

Q = { q0, q1, q2 }

∑ = (a, b)

F = { q2 }

δ (Transition Function of NFA)

Step 1: Q‟ = ɸ Step

2: Q‟ = {q0}

Step 3: For each state in Q‟, find the states for each input symbol.

Currently, state in Q‟ is q0, find moves from q0 on input symbol a and b using transition function of

NFA and update the transition table of DFA

δ‟ (Transition Function of DFA)

Now { q0, q1 } will be considered as a single state. As its entry is not in Q‟, add it to Q‟. So

Q‟ = { q0, { q0, q1 } }

Now, moves from state { q0, q1 } on different input symbols are not present in transition table of

DFA, we will calculate it like:

δ‟ ({ q0, q1 }, a) = δ (q0, a) 𝖴 δ (q1, a) = { q0, q1 }

δ‟ ({ q0, q1 }, b) = δ (q0, b) 𝖴 δ (q1, b) = { q0, q2 }

Now we will update the transition table of DFA.

Automata & compiler design Page 17

δ‟ (Transition Function of DFA)

Now { q0, q2 } will be considered as a single state. As its entry is not in Q‟, add it to Q‟. So

Q‟ = { q0, { q0, q1 }, { q0, q2 } }

Now, moves from state {q0, q2} on different input symbols are not present in transition table of

DFA, we will calculate it like:

δ‟ ({ q0, q2 }, a) = δ (q0, a) 𝖴 δ (q2, a) = { q0, q1 }

δ‟ ({ q0, q2 }, b) = δ (q0, b) 𝖴 δ (q2, b) = { q0 } Now

we will update the transition table of DFA.

δ‟ (Transition Function of DFA)

As there is no new state generated, we are done with the conversion. Final state of DFA will be state

which has q2 as its component i.e., { q0, q2 }

Following are the various parameters for DFA.

Q‟ = { q0, { q0, q1 }, { q0, q2 } }

∑ = (a, b)

F = { { q0, q2 } } and transition function δ‟ as shown above. The final DFA for above NFA has been

shown in Figure 2.

Note : Sometimes, it is not easy to convert regular expression to DFA. First you can convert regular

expression to NFA and then NFA to DFA

Automata & compiler design Page 18

Application of Finite state machine and regular expression in Lexical analysis: Lexical

analysis is the process of reading the source text of a program and converting that source code into a

sequence of tokens. The approach of design a finite state machine by using regular expression is so

useful to generates token form a given source text program. Since the lexical structure of more or

less every programming language can be specified by a regular language, a common way to

implement a lexical analysis is to; 1. Specify regular expressions for all of the kinds of tokens in the

language. The disjunction of all of the regular expressions thus describes any possible token in the

language. 2. Convert the overall regular expression specifying all possible tokens into a deterministic

finite automaton (DFA). 3. Translate the DFA into a program that simulates the DFA. This program

is the lexical analyzer. To recognize identifiers, numerals, operators, etc., implement a DFA in code.

State is an integer variable, δ is a switch statement Upon recognizing a lexeme returns its lexeme,

lexical class and restart DFA with next character in source code.

CONTEXT FREE-GRAMMAR

Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P,S)

Where,

V -A finite set of variables or non-terminals

T -A finite set of terminals (V and T do not intersect)

P -A finite set of productions, each of the form A –>α,

Where A is in V and α is in (V U T)*

Note: that α may be ε.

S -A starting non-terminal (S is inV)

Example :CFG:

G = ({S}, {0, 1}, P, S) P:

S–>0S1or just simply S –> 0S1 |ε S –>ε

Example Derivations:

S => 0S1 (1)

S => ε (2)
 => 01 (2)

S => 0S1 (1)
 => 00S11 (1)
 => 000S111 (1)
 => 000111 (2)

• Note that G “generates” the language {0k1k |k>=0}

Derivation (or Parse) Tree

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

– Every vertex has a label from V U T U{ε}

– The label of the root is S

– If a vertex with label A has children with labels X1,

X2,…, Xn, from left to right, then

Automata & compiler design Page 19

synchronizing set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens works

reasonably well when expressions are parsed.

For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then

fill the rest of the columns with error term.

Terminals
A –> X1, X2,…, Xn

must be a production in P

The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most

derivation”. The „1‟

stands for “1 token of look ahead”.

No LL (1) grammar can be ambiguous or left recursive.

LL (1) Grammar:

• If a vertex has label ε, then that vertex is a leaf and the only child of its‟parent

• More Generally, a derivation tree can be defined with any non-terminal as the root.

Notes:

• Root can be any non-terminal

• Leaf nodes can be terminals or non-terminals

If there were no multiple entries in the Recursive decent parser table, the given grammar is LL

(1).

If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast one

multiply defined entry.

The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which production to use.

Error Recovery in Predictive Parser:

Error recovery is based on the idea of skipping symbols on the input until a token in a

selected set of synchronizing tokens appear. Its effectiveness depends on the choice of

• A derivation tree with root S shows the productions used to obtain a sentential

form.

Automata & compiler design Page 20

Phases of a Compilation

UNIT-II

LL(k)

LL(k) grammar performs a top-down, leftmost parse after reading the string from left-to-right

Here, kk is the number of look-aheads allowed.

With the knowledge of kk look-aheads, we

calculate FIRSTkFIRSTk and FOLLOWkFOLLOWk where:

If the parser looks up entry in the table as synch, then the non terminal on top of the stack is

popped in an attempt to resume parsing. If the token on top of the stack does not match the input

symbol, then pop the token from the stack.

The moves of a parser and error recovery on the erroneous input) id*+id is as follows:

 FIRSTkFIRSTk: kk terminals that can be at the beginning of a derived non-terminal

 FOLLOWkFOLLOWk: kk terminals that can come after a derived non-terminal

The basic idea is to create a lookup table using this information from which the parser can then

simply go and check what derivation is to be made given a certain input token.

Now, the following text from here explains strong LL(k)LL(k):

In the general case, the LL(k)LL(k) grammars are quite difficult to parse directly. This is due to the fact

that the left context of the parse must be remembered somehow.

Each parsing decision is based both on what is to come as well as on what has already

http://www.slkpg.com/llkparse.html

Automata & compiler design Page 21

been seen of the input.

The class of LL(1)LL(1) grammars are so easily parsed because it is strong. The strong

LL(kLL(k) grammars are a subset of the LL(k)LL(k) grammars that can be parsed without

knowledge of the left-context of the parse. That is, each parsing decision is based only on the

next k tokens of the input for the current nonterminal that is being expanded.

Formally,

A grammar (G=N,T,P,S)(G=N,T,P,S) is strong if for any two distinct A-productions in the grammar:

A→αA→α

A→βA→β

FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOLLOWk(A))=∅ FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOL

LOWk(A))=∅
That looks complicated so we‟ll see it another way. Let‟s take a textbook example to understand,

instead, when is some grammar “weak” or when exactly would we need to know the left -context of the

parse.

S→aAaS→aAa

S→bAbaS→bAba

A→bA→b

A→ϵA→ϵ

Here, you‟ll notice that for an LL(2)LL(2) instance, baba could result from either of

the SSproductions. So the parser needs some left-context to decide whether baba is produced by

S→aAaS→aAa or S→bAbaS→bAba.

Such a grammar is therefore “weak” as opposed to being a strong LL(k)LL(k) grammar.

BOTTOM UPPARSING:

Bottom-up parser builds a derivation by working from the input sentence back towards the start

symbol S. Right most derivation in reverse order is done in bottom-up parsing.

(The point of parsing is to construct a derivation. A derivation consists of a series of

rewrite steps)

Sr0r1r2- - - rn-

1rnsentence Bottom-up

Assuming the production A, to reduce ri ri-1 match some RHS against ri then replace with its

corresponding LHS, A.In terms of the parse tree, this is working from leaves to root.

Example – 1:

Sif E then S else S/while E do S/

print E true/ False/id

Input: if id then while true do print else print.

Parse tree:

Basicidea: Given input string a, “reduce” it to the goal (start) symbol, by looking for substring

that match production RHS.

S

E then S Clse

If S

true

While E

|

do S

 if E then S elseS

lm

 if id then S elseS

lm

 if id then while E do S elseS

lm

 if id then while true do S elseS

lm

 if id then while true do print elseS

lm

Automata &Compiler Design Page 22

Automata& Compiler Design

Page 23

 if id then while true do print elseprint

lm

 if E then while true do print elseprint

rm

 if E then while E do print elseprint

rm

 if E then while E do S elseprint

rm

 if E then S elseprint

rm

 if E then S elseS

rm

 S

rm

HANDLE PRUNING:

Keep removing handles, replacing them with corresponding LHS of production, until we reach S.

Example:

EE+E/E*E/(E)/id

Right-sentential form Handle Reducing production

a+b*c A Eid

E+b*c B Eid

E+E*C C Eid

E+E*E E*E EE*E

E+E E+E EE+E

E

The grammar is ambiguous, so there are actually two handles at next-to-last step. We can use parser-

generators that compute the handles for us

LR PARSINGINTRODUCTION:

The "L" is for left-to-right scanning of the input and the "R" is for constructing a

right most derivation in reverse.

Ahauntodmleatare&cCogomniptiiloenr D. esign

Page 24

WHY LR-PARSING:

1. LRparsers can be constructed to recognize virtually all programming-language

constructs for which context-free grammar scan be written.

2. TheLRparsing method is the most general non-backtracking shift- reduce parsing

method known, yet it can be implemented as efficiently as other shift-reduce

methods.

3. The class of grammars that can be parsed using LR methods is a proper subset of

the class of grammars that can be parsed with predictive parsers.

4,AnLR parser can detect a syntactic error as soon as it is possible to do so on a left- to-

right scan of theinput.

The disadvantage is that it takes too much work to constuct an LR parser by hand

for a typical programming-language grammar. But there are lots of LR parser

generators available to make this task easy.

LR-PARSERS:

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of interest are k=0

and k=1. LR(1) is of practical relevance.

„L ‟stands for “Left-to-right” scan of input.

„R‟ stands for “Rightmost derivation (in reverse)”.

K‟standsfornumber of input symbols of look-a-head that are used in making pars ing decisions.When

(K) is omitted, „K ‟is assumed to be 1.

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for

Automata& Compiler Design

Page 25

LR(1) parsers recognize languages that have an LR(1) grammar.

A grammar is LR(1) if, given a right-most derivation

Sr0r1r2- - - rn-1rnsentence.

We can isolate the handle of each right-sentential form ri and determine the production by which

to reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right end of the

handle of ri.

Parser accepts input when stack contains only the start symbol and no remaining input symbol

areleft.

LR(0)item:(no lookahead)

Grammar rule combined with a dot that indicates a position in its RHS.
Ex– 1: SI .S$

S.

x S.(L)

Ex-2: AXYZ generates 4LR(0) items

A.XYZ

AX.

YZ AXY.

Z AXYZ.

AXY.Z indicates that the parser has seen a string derived from XY and is looking for one

derivable from Z.

 LR(0) items play a key role in the SLR(1) table construction algorithm.

 LR(1) items play a key role in the LR(1) and LALR(1) table

construction algorithms. LR parsers have more information available than

LL parsers when choosing a production:

* LR knows everything derived from RHS plus „K ‟lookahead symbols.

* LL just knows„K‟lookahead symbols into whatsderived from RHS.

* Deterministic context free languages:

*

*

* LR (1) languages

*

*

LALR PARSING:

Example:

Construct C={I0,I1, ,In} The collection of sets of LR(1)items

For each core present among the set of LR (1) items, find all sets having that core, and replace

there sets by their Union# (clus them into a single term)

Automata& Compiler Design

Page 26

I0 same asprevious

I1 “

I2 “

I36 – Clubbing item I3 and I6 into one I36 item.

C cC,c/d/$

CcC,c/d/$

Cd,c/d/$

I5some as previous

I47Cd,c/d/$

I89CcC, c/d/$

LALR Parsing table construction:

State
Action Goto

c d $ S C

Io S36 S47 1 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3

5 r1

89 r2 r2 r2

Ambiguous grammar:

A CFG is said to ambiguous if there exists more than one derivation tree for the given input string i.e.,

more than one Left Most Derivation Tree (LMDT) or Right Most Derivation Tree (RMDT).

Definition: G = (V,T,P,S) is a CFG is said to be ambiguous if and only if there exist a string in T* that

has more than on parse tree.

where V is a finite set of variables.

T is a finite set of terminals.

P is a finite set of productions of the form, A -> α, where A is a variable and α ∈ (V 𝖴 T)* S is a

designated variable called the start symbol.

For Example:

1. Let us consider this grammar : E ->E+E|id

We can create 2 parse tree from this grammar to obtain a string id+id+id :

The following are the 2 parse trees generated by left most derivation:

ta& Compiler Design Automa%token NUMBER

Page 27

/* definitions */

....

%%

/* rules */

....

%%

/* auxiliary routines */

....

Both the above parse trees are derived from same grammar rules but both parse trees are different.

Hence the grammar is ambiguous.

YACC PROGRAMMING

A parser generator is a program that takes as input a specification of a syntax, and produces as

output a procedure for recognizing that language. Historically, they are also called compiler-

compilers.

YACC (yet another compiler-compiler) is an LALR(1) (LookAhead, Left-to-right, Rightmost

derivation producer with 1 look ahead token) parser generator. YACC was originally designed for

being complemented by Lex.

Input File:

YACC input file is divided in three parts.

Input File: Definition Part:

 The definition part includes information about the tokens used in the syntax definition:

https://www.geeksforgeeks.org/parsing-set-3-slr-clr-and-lalr-parsers/

Automata& Compiler Design

Page 28

%token NUMBER 621

%start nonterminal

.y

 Yacc automatically assigns numbers for tokens, but it can be overridden by

 Yacc also recognizes single characters as tokens. Therefore, assigned token numbers should

no overlap ASCII codes.

 The definition part can include C code external to the definition of the parser and variable

declarations, within %{and %} in the first column.

 It can also include the specification of the starting symbol in the grammar:

 The rules part contains grammar definition in a modified BNF form.

 Actions is C code in { } and can be embedded inside (Translation schemes).

Input File: Auxiliary Routines Part:

 The auxiliary routines part is only C code.

 It includes function definitions for every function needed in rules part.

 It can also contain the main() function definition if the parser is going to be run as a program.

 The main() function must call the function yyparse().

Input File:

 If yylex() is not defined in the auxiliary routines sections, then it should be included:

 YACC input file generally finishes with:

Output Files:

 The output of YACC is a file named y.tab.c

 If it contains the main() definition, it must be compiled to be executable.

 Otherwise, the code can be an external function definition for the function intyyparse()

 If called with the –d option in the command line, Yacc produces as output a header

file y.tab.h with all its specific definition (particularly important are token definitions to be

included, for example, in a Lex input file).

 If called with the –v option, Yacc produces as output a file y.output containing a textual

description of the LALR(1) parsing table used by the parser. This is useful for tracking down

how the parser solves conflicts.

Semantics

Syntax Directed Translation:

• A formalist called as syntax directed definition is used fort specifying translations for

programming languageconstructs.

• A syntax directed definition is a generalization of a context free grammar in which each

grammar symbol has associated set of attributes and each and each productions is

associated with a set of semantic rules

Definition of (syntax Directed definition) SDD :

• SDD is a generalization of CFG in which each grammar productions X->α is associated with it a set of
semantic rules of the form

a: = f(b1,b2…..bk)

#include "lex.yy.c"

%token ID

A
F→

uto
d
m
i
a
g
t
i
a
t
&
N

C
→
om

;
piler Design

Page 29

Where a is an attributes obtained from the function f.

A syntax-directed definition is a generalization of a context-free grammar in which:

• Each grammar symbol is associated with a set of attributes.

• This setof attributes for a grammar symbol is partitioned into two subsets called

synthesized and inherited attributes of that grammar symbol.

• Each production rule is associated with a set of semanticrules.

• Semantic rules set up dependencies between attributes which can be represented by a

dependency graph.

• This dependency graph determines the evaluation order of these semantic rules.

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also

have some side effects such as printing avalue.

The two attributes for non terminalare :

The two attributes for non terminalare :

Synthesized attribute (S-attribute) :(↑)

An attribute is said to be synthesized attribute if its value at a parse tree node is determined

from attribute values at the children of the node

Inherited attribute:(↑,→)

An inherited attribute is one whose value at parse tree node is determined in terms of attributes at

the parent and | or siblings of thatnode.

 The attribute can be string, a number, a type, a, memory location or anything else.

 The parse tree showing the value of attributes at each node is called an annotated

parse tree.

The process of computing the attribute values at the node is called annotating or decorating the

parse tree.Terminals can have synthesized attributes, but not inherited attributes.

Annotated Parse Tree

• A parse tree showing the values of attributes at each node is called an Annotated parse tree.

• The process of computing the attributes values at the nodes is called annotating(or

decorating) of the parse tree.

• Of course, the order of these computations depends on the dependency graph induced by
the semantic rules.

Ex1:1) Synthesized Attributes : Ex: Consider the CFG :

S→ EN

E→E+T

E→E-T

E→ T

T→ T*F

T→T/F

T→F

F→(E)

Automata& Compiler Design

Page 30

S → ABC

Solution: The syntax directed definition can be written for the above grammar by using semantic

actions for each production

Productionrule Semanticactions

S→EN S.val=E.val

E→E1+T E.val =E1.val +T.val

E→E1-T E.val = E1.val –T.val

E→T E.val=T.val

T→T*F T.val = T.val *F.val

T→T|F T.val =T.val | F.val

F→ (E) F.val=E.val

T→F T.val=F.val

F→digit F.val =digit.lexval

N→; can be ignored by lexical Analyzer as;I

is terminating symbol

For the Non-terminals E,T and F the values can be obtained using the attribute “Val”.

The taken digit has synthesized attribute “lexval”.

In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed.

Following steps are followed to Compute S attributed definition

Write the SDD using the appropriate semantic actions for corresponding production rule of the

given Grammar.

The annotated parse tree is generated and attribute values are computed. The Computation is done in

bottom up manner.

The value obtained at the node is supposed to be final output.

L-attributed SDT

This form of SDT uses both synthesized and inherited attributes with restriction of not taking values

from right siblings.

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes. As in the

following production

S can take values from A, B, and C (synthesized). A can take values from S only. B can take values

from S and A. C can get values from S, A, and B. No non-terminal can get values from the sibling

to its right.

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner.

Automata& Compiler Design

Page 31

We may conclude that if a definition is S-attributed, then it is also L-attributed as L-attributed definition

encloses S-attributed definitions

Intermediate Code

An intermediate code form of source program is an internal form of a program created by the

compiler while translating the program created by the compiler while translating the program from

a high –level language to assembly code(or)object code(machine code).an intermediate source form

represents a more attractive form of target code than does assembly. An optimizing Compiler

performs optimizations on the intermediate source form and produces an object module.

Analysis + syntheses=translation

Createsan generate targe

code Intermediatecode

parser Static intermediate intermediate code

 Checker code generator
code

Generato
r

In the analysis –synthesis model of a compiler, the front-end translates a source program into an

intermediate representation from which the back-end generates target code, in many compilers

the source code is translated into a language which is intermediate in complexity between a HLL

and machine code .the usual intermediate code introduces symbols to stand for various temporary

quantities.

We assume that the source program has already been parsed and statically checked..the various intermediate

code forms are:

a) Polishnotation

b) Abstract syntax trees(or)syntaxtrees

c) Quadruples

d) Triples three address code

e) Indirecttriples

f) Abstract machinecode(or)pseudocopde

postfix notation:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 32

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. the

postfix (or postfix polish)notation for the same expression places the operator at the right end,

asab+.

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is

indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because the

position and priority (number of arguments) of the operators permits only one way to decode a

postfixexpression.

Syntax Directed Translation:

• A formalist called as syntax directed definition is used fort specifying translations for

programming language constructs.

• A syntax directed definition is a generalization of a context free grammar in which each

grammar symbol has associated set of attributes and each and each productions is

associated with a set of semantic rules

Definition of (syntax Directed definition) SDD :

SDD is a generalization of CFG in which each grammar productions X->α is associated with it a set

of semantic rules of the form

a: = f(b1,b2…..bk)

Where a is an attributes obtained from the function f.

• A syntax-directed definition is a generalization of a context-free grammar in which:

• Each grammar symbol is associated with a set of attributes.

This set of attributes for a grammar symbol is partitioned into two subsets called

synthesized and inherited attributes of that grammar symbol.

• Each production rule is associated with a set of semantic rules.

• Semantic rules set up dependencies between attributes which can be represented by a

dependency graph.

Annotated Parse Tree

• A parse tree showing the values of attributes at each node is called an Annotated parse tree.

• The process of computing the attributes values at the nodes is called annotating(or

decorating) of the parse tree.Of course, the order of these computations depends on the

dependency graph induced by the

Automata& Compiler Design

Page 33

Syntax tree:

Annotated parse tree :

ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar. P M

D

M ɛ

D D ; D | id : T | proc id ; N D ; S
N ɛ

Nonterminal P becomes the new start symbol when these productions are added to those in the
translation scheme shown below.

Translation scheme to produce three-address code for assignments

S id := E { p : = lookup (id.name);

ifp≠nil then

emit(p ‘ : =’ E.place)

elseerror }

E E1 + E2 { E.place : = newtemp;

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 34

. . .

S2.code

. . .

(b) if-then-else

emit(E.place ‘: =’ E1.place ‘ + ‘ E2.place) }

E E1 * E2 { E.place : = newtemp;

emit(E.place ‘: =’ E1.place ‘ * ‘ E2.place) }

E - E1 { E.place : = newtemp;

emit (E.place ‘: =’ ‘uminus’ E1.place) }

E (E1) { E.place : = E1.place }

E id { p : = lookup (id.name);

ifp≠nil then

E.place : = p

elseerror }
Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the context of if- then,
if-then-else, and while-do statements such as those generated by the following grammar:

S if E then S1

|

if E then S1 else

S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we
assume that a three-address statement can be symbolically labeled, and that the function newlabel
returns a new symbolic label each time it is called.

• E.true is the label to which control flows if E is true, and E.false is the label to which control
flows if E is false.

• The semantic rules for translating a flow-of-control statement S allow control to flow from

the translation S.code to the three-address instruction immediately following S.code.

• S.nextis a label that is attached to the first three-address instruction to be executed after the
code for Code for if-then , if-then-else, and while-do statements

E.false:

(a) if-then

E.false:

S.next:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 35

S.begin: E.code

to E.true

E.true:

S1.code
to E.false

 gotoS.begin

E.false: . . .

(c) while-do

PRODUCTION

S if E then S1

S if E then S1else S2

S whileE do S1

SEMANTIC RULES

E.true : = newlabel;

E.false : = S.next;

S1.next : = S.next;

S.code : = E.code || gen(E.true „:‟) || S1.code

E.true : = newlabel;

E.false : = newlabel;

S1.next : = S.next;

S2.next : = S.next;

S.code : = E.code || gen(E.true „:‟) || S1.code ||

gen(„goto‟ S.next) ||

gen(E.false „:‟) || S2.code

S.begin : = newlabel;

E.true : = newlabel;

E.false : = S.next;

S1.next : = S.begin;

S.code : = gen(S.begin „:‟)|| E.code ||

gen(E.true „:‟) || S1.code ||

gen(„goto‟ S.begin)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 36

Unit-III

According to Chomsky hierarchy, grammars are divided of 4 types:

Type 0 known as unrestricted grammar.

Type 1 known as context sensitive grammar.

Type 2 known as context free grammar.

Type 3 Regular Grammar.

Type 0: Unrestricted Grammar:

In Type 0

Type-0 grammars include all formal grammars. Type 0 grammar language are recognized by turing

machine. These languages are also known as the Recursively Enumerable languages.

Grammar Production in the form of

alpha \to \beta where alpha is (V + T)* V (V + T)* V

: Variables

T : Terminals.

beta is (V + T)*.

In type 0 there must be at least one variable on Left side of production.

For example,

Sab –>ba

A –> S.

Here, Variables are S, A and Terminals a, b.

Type 1: Context Sensitive Grammar)

Type-1 grammars generate the context-sensitive languages. The language generated by the grammar are

recognized by the Linear Bound Automata

In Type 1

I. First of all Type 1 grammar should be Type 0.

II. Grammar Production in the form of

alpha \to \beta

alpha| <= |\beta|

i.e count of symbol in \alpha is less than or equal to \beta

For Example,

S –> AB

AB –>abc

B –> b

Type 2: Context Free Grammar:

Type-2 grammars generate the context-free languages. The language generated by the grammar is

recognized by a Pushdown automata. Type-2 grammars generate the context-free languages.

In Type 2,

1. First of all it should be Type 1.

2. Left hand side of production can have only one variable.

alpha= 1.

Automata& Compiler Design

Page 37

Their is no restriction on \beta.

For example,

S –> AB

A –> a

B –> b

Type 3: Regular Grammar:

Type-3 grammars generate regular languages. These languages are exactly all languages that can be

accepted by a finite state automaton.

Type 3 is most restricted form of grammar.

Type 3 should be in the given form only :

V –> VT* / T*.

(or)

V –> T*V /T*

for example :

S –> ab.

TypeChecking:
• A compiler has to do semantic checks in addition to syntactic checks.

• Semantic Checks

• Static –done during compilation

• Dynamic –done during run-time

• Type checking is one of these static checkingoperations.

• we may not do all type checking at compile-time.

• Some systems also use dynamic type checking too.

• A type system is a collection of rules for assigning type expressions to the parts of a program.

• A type checker implements a type system.

• A sound type system eliminates run-time type checking for type errors.

• A programming language is strongly-typed, if every program its compiler accepts will

execute without type errors.

• In practice, some of type checking operations is done at run-time (so, most of the

programming languages are not strongly typed).

• –Ex: int x[100]; … x[i] most of the compilers cannot guarantee that i will be between 0 and

99

Type Expression:

• The type of a language construct is denoted by a type expression.

• A type expression can be:

–A basic type

• a primitive data type such as integer, real, char, Boolean, …

• type-error to signal a type error

• void: notype

Automata& Compiler Design

Page 38

A type name

• a name can be used to denote a type expression.

• A type constructor applies to other type expressions.

• arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index

range. Ex: array(0..99,int)

• products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type

expression. Ex: int xint

• pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer(int)

• functions: We may treat functions in a programming language as mapping from a domain

type D to a range type R. So, the type of a function can be denoted by the type expression

D→R where D are R type expressions. Ex: int→int represents the type of a function

which takes an int value as parameter, and its return type is also int.

Type Checking of Statements:

S->d=E { if (id.type=E.type

Then S.type=void else

S.type=type- error

S ->if Ethen S1 { if (E.type=boolean then

S.type=S1.type else S.type=type-error}

S->while EdoS1 { if (E.type=boolean then

S.type=S1.type else S.type=type-error}

Type Checking of Functions:

E->E1(E2) { if (E2.type=s and E1.type=s t)thenE.type=t

else E.type=type-error}

Ex: intf(double x, char y) { ... }

f: double x char->int

argumenttypes return type

Structural Equivalence of Type Expressions:

• How do we know that two type expressions are equal?

• As long as type expressions are built from basic types (no type names), we may use structural

equivalence between two type expressions

Structural Equivalence Algorithm (sequin):

if (s and t are same basic types) then return true

else if (s=array(s1,s2) and t=array(t1,t2))

ASoutotmhaetat&ypCeomopfilaernDeesxigpnression like 1 + 2 and consequently the signature of + may also depend on

Page 39

then return (sequiv(s1,t1)

andsequiv(s2,t2))

else if(s= s1 x s2and t = t1 x t2)

then return (sequiv(s1,t1)

and sequiv(s2,t2))

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1))

else if (s = s1 s2and t = t1 t2) then return (sequiv(s1,t1) and sequiv(s2,t2))

else return false

Names for Type Expressions:

In some programming languages, we give a name to a type expression, and we use that name as a

type expression afterwards.

type link= ↑cell;? p,q,r,s have same

types ? varp,q :link;

varr,s : ↑cell

• How do we treat type names?

Get equivalent type expression for a type name (then use structural equivalence), or

Treat a type name as a basic type

Overloading of Functions and Operators

AN OVERLOADED OPERATOR may have different meanings depending upon its context.

Normally overloading is resolved by the types of the arguments,

but sometimes this is not possible and an expression can have a set of possible types.

Example 2 In the previous section we were resolving overloading of binary arithmetic operators

by looking at the the types of the arguments. Indeed we had two possibles types, say $ \mathbb

{Z}$ and $ \mathbb {R}$, with a natural coercion due to the inclusion

$\displaystyle \mbox{${\mathbb Z}$}$ $\displaystyle \subseteq$ $\displaystyle

\mbox{${\mathbb R}$}$ (2)

But what could we do if we had the three types $ \mathbb {Z}$, $ \mbox{${\mathbb Z}$}$/p$

\mbox{${\mathbb Z}$}$ and $ \mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$ for two

different integers m and p?

There is no natural coercion between $ \mbox{${\mathbb Z}$}$/p$ \mbox{${\mathbb Z}$}$ and $

\mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$.

Automata& Compiler Design

Page 40

what is done with 1 + 2.

SET OF POSSIBLE TYPES FOR A SUBEXPRESSION. The first step in resolving the

overloading of operators and functions occuring in an expression E' is to determine the possible

types for E'.

For simplicity, we restrict here to unary functions.

We assign to each subexpression E of E' a synthesized attribute E.types which is the set of possible

types for E.

Automata& Compiler Design

Page 41

These attributes can be computed by the following translation scheme.

E' $ \longmapsto$ E
E $ \longmapsto$ $ \bf id$

{ E'.types :=
{ E.types :=

E.types }
lookup(id.entry) }

E $ \longmapsto$ E1[E2] { E.types := {t | ($ \exists$ s $
\in$ E2.types) | (s $ \rightarrow$ t) $ \in$ E1.types} }

NARROWING THE SET OF POSSIBLE TYPES.

The second step in resolving the overloading of operators and functions in the expression E'

consists of determining if a unique type can be assigned to each subexpression E of E' and

generating the code for evaluating each subexpression E of E'.

This is done by assigning an inherited attribute E.unique to each subexpression E of E' such that
either E can be assigned a unique type and E.unique is this type,or E cannot be assigned a unique type and

E.unique is $ \bf type_error$.assigning a synthesized attribute E.code which is the target code for evaluating E
and executing the following translation scheme (where the attributes E.types have

already been computed).

 Automata& Compiler Design

Page 42

Unit-IV

Automata& Compiler Design

Page 43

Automata& Compiler Design

Page 44

Scope access to non local names

Scope rules define the visibility rules for names in a programming language. What if you have references to a

variable named k in different parts of the program? Do these refer to the same variable or to different ones?

Most languages, including Algol, Ada, C, Pascal, Scheme, and Haskell, are statically scoped. A block defines a

new scope. Variables can be declared in that scope, and aren't visible from the outside. However, variables outside

the scope -- in enclosing scopes -- are visible unless they are overridden. In Algol, Pascal, Haskell, and Scheme

(but not C or Ada) these scope rules also apply to the names of functions and procedures.

Static scoping is also sometimes called lexical scoping.

Simple Static Scoping Example

begin
integer m, n;

procedure hardy;

begin

print("in hardy -- n = ", n);

end;

procedure laurel(n: integer);

begin

print("in laurel -- m = ", m);
print("in laurel -- n = ", n);

hardy;

end;

m := 50;
n := 100;
print("in main program -- n = ", n);

laurel(1);

hardy;

end;

The output is:
in main program -- n = 100

in laurel -- m = 50

in laurel -- n = 1
in hardy -- n = 100 /* note that here hardy is called from laurel */
in hardy -- n = 100 /* here hardy is called from the main program */
11.5
in hardy -- n = 1 ;; NOTE DIFFERENCE -- here hardy is called from laurel in hardy --
n = 100 ;; here hardy is called from the main program

Static Scoping with Nested Procedures

begin

integer m, n;

procedure laurel(n: integer);

begin

Automata& Compiler Design

Page 45

procedure hardy;

begin

print("in hardy -- n = ", n);

end;

print("in laurel -- m = ", m);

print("in laurel -- n = ", n);

hardy;

end;

m := 50;

n := 100;

print("in main program -- n = ", n);

laurel(1);

/* can't call hardy from the main program any more */

end;
The output is:
in main program -- n = 100 in
laurel -- m = 50
in laurel -- n = 1 in
hardy -- n = 1

Parameters

Automata& Compiler Design

Page 46

Automata& Compiler Design

Page 47

Automata& Compiler Design

Page 48

Automata& Compiler Design

Page 49

Language facilities for dynamic storage allocation
The data under program control can be allocated dynamically.this allocation is done from heap.
Explicit allocation is the kind of memory allocation that can be with the help of some procedures.
Implicit allocation is a kind of allocation that can be done automatically for storing the results of expression

evaluation.

Garbage is a ammount of memory which gets alloacted dynamically but is unreachable memory.

Dangling reference is a kind of complication that occurs due to explicit dealloaction of memory.

CODEOPTIMIZATION

The code produced by the straight forward compiling algorithms can often be made to run faster

or take less space, or both. This improvement is achieved by program transformations that are

traditionally called optimizations. Compilers that apply code- improving transformations are

called optimizing compilers.

Optimizations are classified into two categories. They are

Machine independent optimizations:

Machine dependant optimizations:

Machine independentoptimizations:

Machine independent optimizations are program transformations that improve the target code

without taking into consideration any properties of the target machine.

Machine dependantoptimizations:
Machine dependant optimizations are based on register allocation and utilization of special

machine- instruction sequences.

The criteria for code improvementtransformations:

• Simply stated, the best program transformations are those that yield the most benefit for

the leasteffort.

• The transformation must preserve the meaning of programs. That is, the optimization must

not change the output produced by a program for a given input, or cause an error such as

division by zero, that was not present in the original source program. At all times we take

the “safe” approach of missing an opportunity to apply a transformation rather than risk

changing what the program does.

• A transformation must, on the average, speed up programs by a measurable amount. We

are also interested in reducing the size of the compiled code although the size of the code

has less importance than it once had. Not every transformation succeeds in improving

every program, occasionally an “optimization” may slow down a program slightly.

• The transformation must be worth the effort. It does not make sense for a compiler writer

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 50

• to expend the intellectual effort to implement a code improving transformation and to

have the compiler expend the additional time compiling source programs if this effort is

not repaid when the target programs are executed. “Peephole” transformations of this kind

are simple enough and beneficial enough to be included in any compiler.

• Flow analysis is a fundamental prerequisite for many important types of code

improvement.

• Generally control flow analysis precedes data flowanalysis.

• Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA

constructs sucha

o control flow graph

o Callgraph

• Data flow analysis (DFA) is the process of ascerting and collecting information prior to

program execution about the possible modification, preservation, and use of certain

entities (such as values or attributes of variables) ina computer program

Function-Preserving Transformations

• There are a number of ways in which a compiler can improve a program without

changing the function it computes.

• The transformations

o Common sub expressione limination,

o Copy propagation,
o Dead-code elimination,and
o Constant folding, are common examples of such function-preserving

transformations. The other transformations come up primarily when global
optimizations are performed.

• Frequently, a program will include several calculations of the same value, such as an

offset in an array. Some of the duplicate calculations cannot be avoided by the

programmer because they lie below the level of detail accessible within the source

language.

Common Sub expressions elimination:

• An occurrence of an expression E is called a common sub-expression if E was

previously computed, and the values of variables in E have not changed since the

previous computation. We can avoid recomputing the expression if we can usethe

previously computedvalue.

Forexample

t1: =4*i

t2: =a [t1]

t3: =4*j

t4:=4*i

t5:=n

t 6: =b [t 4] +t 5

The above code can be optimized using the common sub-expression eliminationas t1:=4*i

t2:=a

[t1]t3:=4*j

t5:=n

t6: =b [t1] +t5

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. And

value of i is not been changed from definition to use.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 51

CopyPropagation:
Assignments of the form f : = g called copy statements, or copies for short. The idea behind the copy-

propagation transformation is to use g for f, whenever possible after the copy statement f: = g. Copy

propagation means use of one variable instead of another. This maynot appear to be an improvement, but
as we shall see it gives us an opportunity to eliminate x.

For example: x=Pi;

…… A=x*r*r;

The optimization using copy propagation can be done as follows: A=Pi*r*r; Here the

variable x is eliminated

Dead-CodeEliminations:
A variable is live at a point in a program if its value can be used subsequently; otherwise, it is

dead at that point. A related idea is dead or useless code, statements that compute values that

never get used. While the programmer is unlikely to introduce any dead code intentionally, it

may appear as the result of previous transformations. An optimization can be done by

eliminating deadcode.

Example: i=0;

if(i=1)

{

a=b+5;

}

Here,„if‟ statement is dead codebecausethis condition will never get satisfied.

Constant folding:

• We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the

constant instead is known as constant folding.

• One advantage of copy propagation is that it often turns the copy statement into deadcode.

Forexample,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

Loop Optimizations

• We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time. The

running time of a program may be improved if we decrease the number of instructions in

an inner loop, even if we increase the amount of code outsidethatloop.

• Three techniques are important for loopoptimization:

codemotion, which moves code outside aloop;

Induction -variable elimination, which we apply to replace variables from innerloop.

Reduction in strength, which replaces and expensive operation by a cheaper one, such as a

multiplication by an addition

CodeMotion:

An important modification that decreases the amount of code in a loop is code motion. This

transformation takes an expression that yields the same result independent of the number of times

a loop is executed (a loop-invariant computation) and places the expression before the loop. Note

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 52

that the notion “before the loop” assumes the existence of an entry for the loop. For example,

evaluation of limit-2 is a loop-invariant computation in the following while-statement:

while (i<= limit-2) /* statement does not change Limit*/ Code motion

will result in the equivalent of

t= limit-2;

while (i<=t) /* statement does not change limit or t */

Induction Variables

• Loops are usually processed inside out. For example consider the loop around B3.
• Note that the values of j and t4 remain in lock-step; every time the value of j decreases by

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called

induction variables.

• When there are two or more induction variables in a loop, it may be possible to get rid of

all but one, by the process of induction-variable elimination. For the inner loop around

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.

• However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2

- B5 is considered.

LOOPS IN FLOWGRAPH

• A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed

by a code-generation algorithm. Nodes in the flow graph represent computations, and the

edges represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial node of the flow graph to n goes

through d. This will be denoted by d dom n. Every initial node dominates all the remaining nodes in

the flow graph and the entry of a loop dominates all nodes in the loop. Similarly every node

dominates itself.

Example:

• In the flow graph below,

• Initial node,node1 dominates every node. *node 2 dominates itself

• node 3 dominates all but 1 and 2. *node 4 dominates all but 1,2 and 3.

• node 5 and 6 dominates only themselves,since flow of control can skip around either by

going through the other.

• node 7 dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10.

• node 9 and 10 dominates only themselves

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 53

• The way of presenting dominator information is in a tree, called the dominator tree in
which the initial node is the root.

• The parent of each other node is its immediate dominator.
• Each node d dominates only its descendents in thetree.
• The existence of dominator tree follows from a property of dominators; each node has a

unique immediate dominator in that is the last dominator of n on any path from the initial
node ton.

• In terms of the dom relation, the immediate dominator m has the property is d=!n and d
dom n, then d domm.

D(1)={1}

D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 54

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}

NaturalLoop

 One application of dominator information is in determining the loops of a flow

graph suitable for improvement.

 The properties of loops are

o A loop must have a single entry point, called the header. This entry point-

dominates all nodes in the loop, or it would not be the sole entry to theloop.
o There must be at least one wayto iterate the loop(i.e.)at least one path back

to the header.

One way to find all the loops in a flow graph is to search for edges in the flow graph whose heads

dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of edges are

called as backedge.

Example:

In the above graph,

7 → 4 4 DOM7

0 →7 7 DOM10

4 → 3

8 → 3

9 →1

 The above edges will form loop in flowgraph.

 Given a back edge n → d, we define the natural loop of the edge to be d plus the set of
nodes that can reach n without going through d. Node d is the header of theloop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d

LOOP:

 If we use the natural loops as “the loops”, then we have the useful property that

unless two loops have the same header, they are either disjointed or one is entirely

contained in the other. Thus, neglecting loops with the same header for the

moment, we have a natural notion of inner loop: one that contains no otherloop.

 When two natural loops have the same header, but neither is nested within the

other, they are combined and treated as asingleloop.

Pre-Headers:

 Several transformations require us to move statements “before the header”.

Therefore begin treatment of a loop L by creating a new block, called thepreheater.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Automata& Compiler Design

Page 55

 The pre -header has only the header as successor, and all edges which formerly

entered the header of L from outside L instead enter the pre-header.

 Edges from inside loop L to the header are notchanged.

 Initially the pre-header is empty, but transformations on L may place statements in it.

header pre-

header

loop L

header

loop L

Reducible flow graphs:

• Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined,

dominators can be easily calculated, data flow analysis problems can also be solved

efficiently.

• Exclusive use of structured flow-of-control statements such as if-then-else, while-do,

continue, and break statements produces programs whose flow graphs are always

reducible. The most important properties of reducible flow graphs are that there are no

jumps into the middle of loops from outside; the only entry to a loop is through its header.

Definition:
• A flow graph G is reducible if and only if we can partition the edges into two

disjoint groups, forward edges and back edges, with the following properties.
• The forward edges from an acyclic graph in which every node can be reached from

initial node of G.
• The back edges consist only of edges where heads dominate their

stails. Example: The above flow graph is reducible.

• If we know the relation DOM for a flow graph, we can find and remove all the back

edges.

• The remaining edges are forwardedges.

• If the forward edges form an acyclic graph, then we can say the flow graph reducible.

• In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7

whose heads dominate their tails, the remaining graph is acyclic.

• The key property of reducible flow graphs for loop analysis is that in such flow graphs

every set of nodes that we would informally regard as a loop must contain a backedge

PEEPHOLE OPTIMIZATION

• A statement-by-statement code-generations strategy often produce target code that
contains redundant instructions and suboptimal constructs .The quality of such target code
can be improved by applying “optimizing” transformations to the target program.

• A simple but effective technique for improving the target code is peephole optimization, a
method for trying to improving the performance of the target program by examining a
short sequence of target instructions (called the peephole) and replacing these instructions

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Automataw&hCeonmwpileertDaleksigonf the definitions reaching the beginning and the end of statements with the

Page 56

by a shorter or faster sequence, whenever possible.
• The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this.it is characteristic of
peephole optimization that each improvement may spawn opportunities for additional
improvements.

 We shall give the following examples of program transformations that are

characteristic of peephole optimizations:

 Redundant-instructionselimination

 Flow-of-control optimizations

 Algebraics implifications

 Use of machine idioms

 Unreachable Code

Redundant Loads And Stores:

If we see the instructions sequence

(1) MOVR0,a

(2) MOVa,R0
we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is already
in register R0.If (2) had a label we could not be sure that (1) was always executed immediately before (2)

and so we could not remove (2).

INTRODUCTION TO GLOBAL DATAFLOWANALYSIS

 In order to do code optimization and a good job of code generation , compiler needs to

collect information about the program as a whole and to distribute this information to

each block in the flowgraph.

 A compiler could take advantage of “reaching definitions” , such as knowing where a

variable like debug was last defined before reaching a given block, in order to perform

transformations are just a few examples of data-flow information that an optimizing

compiler collects by a process known as data-flow analysis.

 Data- flow information can be collected by setting up and solving systems of equations

of the form:

out [S] = gen [S] U (in [S] – kill [S])

This equation can be read as “ the information at the end of a statement is either generated within

the statement , or enters at the beginning and is not killed as control flows through the

statement.”

• The details of how data-flow equations areset and solved depend on threefactors.

• The notions of generating and killing depend on the desired information, i.e., on the data

flow analysis problem to be solved. Moreover, for some problems, instead of proceeding

along with flow of control and defining out[s] in terms of in[s], we need to proceed

backwards and define in[s] in terms of out[s].

• Since data flows along control paths, data-flow analysis is affected by the constructs in a

program. In fact, when we write out[s] we implicitly assume that there is unique end point

where control leaves the statement; in general, equations are set up at the level of basic

blocks rather than statements, because blocks do have unique end points.

• There are subtleties that go along with such statements as procedure calls, assignments

through pointer variables, and even assignments to array variables.

Data-flow analysis of structuredprograms:

• Flow graphs for control flow constructs such as do-while statements have a useful
property: there is a single beginning point at which control enters and a single end point
that control leaves from when execution of the statement is over. We exploit this property

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 57

d : a : = b + c

followingsyntax.

Sid: = E| S; S | if E then S else S | do S while

E Eid + id|id

• Expressions in this language are similar to those in the intermediate code, but the flow

graphs for statements have restricted forms.

• We define a portion of a flow graph called a region to be a set of nodes N that

includes a header, which dominates all other nodes in the region. All edges between

nodes in N are in the region, except for somethat enter the header.

• The Portion of flow graph corresponding to a statement S is a region that obeys

the further restriction that control can flow to just one outside block when it leaves

the region.

• We say that the beginning points of the dummy blocks at the entry and exit of a

statement‟s region are the beginning and end points, respectively, of the

statement.The equations are inductive, or syntax-directed, definition of the sets in[S],

out[S], gen[S], and kill[S] for all statementsS.

• gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions that

never reach the end ofS.

Consider the following data-flow equations for reaching definitions: i

)

gen [S] = { d }

kill [S] = Da – { d }

out [S] = gen [S] U (in[S] – kill[S])

Observe the rules for a single assignment of variable a. Surely that assignment is a

definition of a, say d. ThusGen[S]={d}

On the other hand, d “kills” all other definitions of a, so we write Kill[S]

= Da –{d}

Where, Da is the set of all definitions in the program for variable a.

ii

 S1S2

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Automata& Compiler Design

Page 58

gen[S]=gen[S2] U(gen[S1]-kill[S2])

Kill[S] = kill[S2] U (kill[S1] – gen[S2])

in [S1] = in [S] in [S2] =

out [S1] out

[S] = out [S2]

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is generated

by S2, then it is surely generated by S. if d is generated by S1, it will reach the end of S

provided it is not killed by S2. Thus, wewrite

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Similar reasoning applies to the killing of a definition, so we have Kill[S]

= kill[S2] U (kill[S1] –gen[S2])

Automata& Compiler Design

Page 59

Unit-V

OBJECT CODE GENERATION:

The final phase in our compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program.

The requirements traditionally imposed on a code generator are severe. The output code must be

correct and of high quality, meaning that it should make effective use of the resources of the

target machine. Moreover, the code generator itself should run efficiently.

Object code forms

Absolute coding is a method of computer programming where the writer uses absolute instead of indirect

addressing. For example, in an assembly language, the programmer may enter an exact memory address for

data storage instead of an indirect address that a higher programming language may use.

After compilation of the source code, the object code is generated, which not only contains machine level

instructions but also information about hardware registers, memory address of some segment of the run-time

memory (RAM), information about system resources, read-write permissions ..etc.

Now there could be two ways for allocating run-time memory:-

1. The programmer decides which segment of the memory would be used during running of the programme.
For doing this he passes memory address symbols or hex symbols in the programme.

2. Dynamic allocation by the linker, allocation of memory to the subroutines wherever, linker finds spacefor
them. This is something called relocatable machine code. i.e it doesn’t have a static memory address for
running.

Assembly Language is a low-level programming language. It helps in understanding the programming language to

machine code. In computer, there is assembler that helps in converting the assembly code into machine code

executable. Assembly language is designed to understand the instruction and provide to machine language for

further processing. It mainly depends on the architecture of the system whether it is the operating system or

computer architecture.

Assembly Language mainly consists of mnemonic processor instructions or data, and other statements or

instructions. It is produced with the help of compiling the high-level language source code like C, C++. Assembly

Language helps in fine-tuning the program.

https://www.computerhope.com/jargon/a/al.htm
https://www.computerhope.com/jargon/p/programming-language.htm

Automata& Compiler Design

Page 60

ISSUES IN THE DESIGN OF A CODE GENERATOR

While the details are dependent on the target language and the operating system, issues such as

memory management, instruction selection, register allocation, and evaluation order are inherent

in almost all code generation problems.

INPUT TO THE CODE GENERATOR

The input to the code generator consists of the intermediate representation of the source program

produced by the front end, together with information in the symbol table that is used to determine

the run time addresses of the data objects denoted by the names in the intermediate

representation.

There are several choices for the intermediate language, including: linear representations such as

postfix notation, three address representations such as quadruples, virtual machine representations

such as syntax trees and dags.

We assume that prior to code generation the front end has scanned, parsed, and translated the

source program into a reasonably detailed intermediate representation, so the values of names

appearing in the intermediate language can be represented by quantities that the target machine

can directly manipulate (bits, integers, reals, pointers, etc.). We also assume that the necessary

type checking has take place, so type conversion operators have been inserted wherever necessary

and obvious semantic errors (e.g., attempting to index an array by a floating point number) have

already been detected. The code generation phase can therefore proceed on the assumption that its

input is free of errors. In some compilers, this kind of semantic checking is done together with

code generation.

Automata& Compiler Design

Page 61

TARGET PROGRAMS

The output of the code generator is the target program. The output may take on a variety of

forms: absolute machine language, relocatable machine language, or assembly language.

Producing an absolute machine language program as output has the advantage that it can be

placed in a location in memory and immediately executed. A small program can be compiled and

executed quickly. A number of “student-job” compilers, such as WATFIV and PL/C, produce

absolute code.

Producing a relocatable machine language program as output allows subprograms to be compiled

separately. A set of relocatable object modules can be linked together and loaded for execution by

a linking loader. Although we must pay the added expense of linking and loading if we produce

relocatable object modules, we gain a great deal of flexibility in being able to compile

subroutines separately and to call other previously compiled programs from an object module. If

the target machine does not handle relocation automatically, the compiler must provide explicit

relocation information to the loader to link the separately compiled programsegments.

Producing an assembly language program as output makes the process of code generation somewhat

easier .We can generate symbolic instructions and use the macro facilities of the assembler to help

generate code .The price paid is the assembly step after code generation.

Because producing assembly code does not duplicate the entire task of the assembler, this choice

is another reasonable alternative, especially for a machine with a small memory, where a

compiler must uses several passes.

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block. For

each three-address statement of the form x : = y op z, perform the following actions:

Invoke a function getreg to determine the location L where the result of the computation y op z

should be stored.

Consult the address descriptor for y to determine y, the current location of y. Prefer the register

for y if the value of y is currently both in memory and a register. If the value of y is not already

in L, generate the instruction MOV y , L to place a copy of y in L.

Generate the instruction OP z , L where z is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in

location L. If x is in L, update its descriptor and remove x from all other descriptors.

If the current values of y or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those

registers will no longer contain y or z.

Generating Code for Assignment Statements:

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-

address code sequence:

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a – b MOV a, R0 R0 contains t t in R0

SUB b, R0

u : = a – c MOV a , R1 R0 contains t t in R0

SUB c , R1 R1 contains u u in R1

v : = t + u ADD R1, R0 R0 contains v u in R1

R1 contains u v in R0

d : = v + u

ADD R1, R0
R

0

contains d

d in R0

MOV R0, d

 d in R0 and memory

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a : = b [i] and a [i] : = b

Statements Code Generated Cost

a : = b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a : = *p and *p : = a

Automata &Compiler Design Page 61

Automata& Compiler Design Page 62

Statements Code Generated Cost

a : = *p MOV *Rp, a 2

*p : = a MOV a, *Rp 2

REGISTER ALLOCATION
Instructions involving register operands are usually shorter and faster than those involving operands in memory.

Therefore, efficient utilization of register is particularly important in generating good code. The use of registers is

often subdivided into two sub problems:

1. During register allocation, we select the set of variables that will reside in registers at a

point in theprogram.

2. During a subsequent register assignment phase, we pick the specific register that a

variable will reside in.

Finding an optimal assignment of registers to variables is difficult, even with single register

values. Mathematically, the problem is NP-complete. The problem is further complicated because

the hardware and/or the operating system of the target machine may require that certain register

usage conventions be observed.

Certain machines require register pairs (an even and next odd numbered register) for some

operands and results. For example, in the IBM System/370 machines integer multiplication and

integer division involve register pairs. The multiplication instruction is of the form

M x,y

where x, is the multiplicand, is the even register of an even/odd register pair.

The multiplicand value is taken from the odd register pair. The multiplier y is a single register. The

product occupies the entire even/odd register pair.

The division instruction is of the form D x,y

where the 64-bit dividend occupies an even/odd register pair whose even register is x; y represents the

divisor. After division, the even register holds the remainder and the odd register the quotient.

Now consider the two three address code sequences (a) and (b) in which the only difference is the

operator in the second statement. The shortest assembly sequence for (a) and (b) are given in(c).

Ri stands for register i. L, ST and A stand for load, store and add respectively. The optimal choice for

the register into which “a‟ is to be loaded depends on what will ultimately happen to e.

t := a+b t := a +b

t := t* c t := t +c

t := t/ d t := t / d

Automata& Compiler Design Page 63

(a) fig. 2 Two three address code sequences

L R1, a L R0, a

A R1, b A R0, b

M R0, c A R0, c

D R0, d SRDA R0, 32

ST R1, t

(a)

D

(b)

R0, d STR1,t

THE DAG REPRESENTATION FOR BASIC BLOCKS

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

Leaves are labeled by unique identifiers, either variable names or constants.

Interior nodes are labeled by an operator symbol.

Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

DAGs are useful data structures for implementing transformations on basic blocks.

It gives a picture of how the value computed by a statement is used in subsequent

statements.

It provides a good way of determining common sub - expressions

Input: A basic block

Output: A DAG for the basic block containing the following information:

A label for each node. For leaves, the label is an identifier. For interior nodes, an

operator symbol.

For each node a list of attached identifiers to hold the computed values.

Case (i) x : = y OP z

Case (ii) x : = OP y

Case (iii) x : = y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). (Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such

a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the listof attached identifiers for the

node n found in step 2 and set node(x) to n.

Automata& Compiler Design Page 64

t1 := 4* i
t2 := a[t1]
t3 := 4* i
t4 := b[t3]
t5 := t2*t4
t6 := prod+t5
prod := t6
t7 := i+1
i := t7

if i<=20 goto (1)

Example: Consider the block of three- address statements:

Stages in DAG Construction

Automata& Compiler Design Page 65

Automata& Compiler Design Page 66

Automata& Compiler Design Page 67

GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that, from a dag

we can easily see how to rearrange the order of the final computation sequence than we can starting from

a linear sequence of three-address statements or quadruples.

Rearranging the order

The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1 : = a + b
t2 : = c + d
t3 : = e – t2
t4 : = t1 – t3

Generated code sequence for basic block:

MOV a , R0
ADD b , R0
MOV c , R1
ADD d , R1
MOV R0 , t1
MOV e , R0
SUB R1 , R0
MOV t1 , R1
SUB R0 , R1
MOV R1 , t4

Rearranged basic block:

Now t1 occurs immediately before t4.

t2 : = c + d
t3 : = e – t2
t1 : = a + b
t4 : = t1 – t3

Revised code sequence:

MOV c , R0
ADD d , R0
MOV a , R0
SUB R0 , R1
MOV a , R0
ADD b , R0
SUB R1 , R0
MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved.

	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	(Autonomous Institution – UGC, Govt. of India)

	Department of Computer Science and Engineering
	Vision
	Mission
	QUALITY POLICY
	(R20A1202) AUTOMATA & COMPILER DESIGN
	COURSE OBJECTIVES: -
	UNIT - II:
	UNIT - IV:
	UNIT - V:
	TEXT BOOKS:
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	UNIT -1
	Special string: ε (also denoted by λ)
	{}The empty set/language, containing nostring.
	Definition:
	Examples:
	Identities:
	12. (u+v)* = (u*+v)*
	=(u+vu*)*
	=u*(vu*)*
	Finite State Machines
	Finite Automata
	Formal Definition of a Finite Automaton
	Deterministic Finite Automata (DFA)
	δ(q ,w) = p for some state p in F.
	L(M) = {w | w is in Σ* and δ(q ,w) is in F}
	L(M) = {w | w is in Σ* and w is accepted by M}
	Nondeterministic Finite Automata (NFA)
	Conversion from NFA to DFA
	Example
	CONTEXT FREE-GRAMMAR
	Where,
	T -A finite set of terminals (V and T do not intersect) P -A finite set of productions, each of the form A –>α,
	Example Derivations:
	Derivation (or Parse) Tree
	The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most derivation”. The „1‟
	No LL (1) grammar can be ambiguous or left recursive. LL (1) Grammar:
	Notes:
	Error Recovery in Predictive Parser:
	BOTTOM UPPARSING:
	Sif E then S else S/while E do S/ print E true/ False/id
	 if E then S elseS
	 if id then S elseS
	 if id then while E do S elseS
	 if id then while true do S elseS
	 if id then while true do print elseS
	 if id then while true do print elseprint
	 if E then while true do print elseprint
	 if E then while E do print elseprint
	 if E then while E do S elseprint
	 if E then S elseprint
	 if E then S elseS
	HANDLE PRUNING:
	LR PARSINGINTRODUCTION:
	WHY LR-PARSING:
	LR-PARSERS:
	AXY.Z indicates that the parser has seen a string derived from XY and is looking for one derivable from Z.
	 LR(1) items play a key role in the LR(1) and LALR(1) table construction algorithms. LR parsers have more information available than LL parsers when choosing a production:
	* LL just knows„K‟lookahead symbols into whatsderived from RHS.
	*
	* LR (1) languages
	* (1)
	Example:
	LALR Parsing table construction:
	For Example:
	YACC PROGRAMMING
	Input File:
	Input File: Definition Part:
	Input File: Auxiliary Routines Part:
	Input File: (1)
	Output Files:
	Semantics
	The two attributes for non terminalare :
	Productionrule Semanticactions
	Intermediate Code
	postfix notation:
	Annotated parse tree :
	Translation scheme to produce three-address code for assignments
	Flow-of-Control Statements
	(c) while-do

	
	 (1)
	Unit-III
	TypeChecking:
	Type Expression:
	Names for Type Expressions:

	Scope access to non local names
	Static Scoping with Nested Procedures

	Parameters
	Language facilities for dynamic storage allocation
	CODEOPTIMIZATION
	Machine independentoptimizations:
	Machine dependantoptimizations:
	Function-Preserving Transformations
	Common Sub expressions elimination:
	CopyPropagation:
	Constant folding:
	Loop Optimizations
	CodeMotion:
	Induction Variables
	LOOPS IN FLOWGRAPH
	Dominators:
	NaturalLoop
	LOOP:
	Pre-Headers:
	Reducible flow graphs:
	PEEPHOLE OPTIMIZATION
	Redundant Loads And Stores:
	INTRODUCTION TO GLOBAL DATAFLOWANALYSIS
	Sid: = E| S; S | if E then S else S | do S while E Eid + id|id
	OBJECT CODE GENERATION:
	Object code forms
	TARGET PROGRAMS
	A code-generation algorithm:
	REGISTER ALLOCATION
	THE DAG REPRESENTATION FOR BASIC BLOCKS
	It provides a good way of determining common sub - expressions

